发布日期:2019-04-11 作者:物理科学与技术学院





报告时间:2019327日 (星期三)下午 15:00-15:45


报告摘要:The modern electronics have been built upon the bulk crystalline silicon (c-Si), which is, however, a brittle semiconductor that offers little stretchability. While most of the stretchable electronics have been prototyped with polymer and organic semiconductors, the high carrier mobility, stability and the best-known passivation and doping controls established in c-Si are surely desirable for building high performance soft electronics. To endow extra stretchability, a precise and programmable line-shape engineering of the quasi-1D silicon nanowire (SiNW) channels represents a promising new strategy. We here explore a self-assembly in-plane solid-liquid-solid (IPSLS) growth of SiNWs,[1-5] where a thin film of amorphous Si (a-Si) is fed as precursor layer to drive the indium (In) or tin (Sn) nano-droplets to move and produce well-defined crystalline SiNWs behind. The line-shape of the in-plane SiNWs can be engineered either via a self-automated zigzag growth, stimulated by a strong interface squeezing interaction during the in-plane growth,[6] or via a deterministic line-shape programming of in-plane SiNWs into extremely stretchable springs or arbitrary 2D patterns, with the aid of a precise guided growth along programmed step edges. [7] These new capabilities have enabled us to demonstrate a super-elastic and robust electric transport carried by the SiNW springs even under large stretching of more than 200%. This highly reliable line-shape programming approach holds a strong promise to extend the glory legend of c-Si technology into the new generation of bio-friendly and stretchable electronics.



[1] L. Yu, P.-J. Alet, G. Picardi, and P. Roca i Cabarrocas, Phys. Rev. Lett. 102, 125501 (2009).

[2] L. Yu and P. Roca i Cabarrocas, Phys. Rev. B 81, 085323 (2010).

[3] M. Xu et al., Nano Lett. 16, 7317 (2016).

[4] Z. Xue et al., Nature communications 7, 12836 (2016).

[5] L. Yu et al., Nano Lett. 14, 6469 (2014).

[6] Z. Xue et al., Adv. Func. Mater. 26, 5352 (2016).

[7] Z. Xue et al., Nano Lett. 17, 7638 (2017).



余林蔚,南京大学教授,博士生导师,江苏省“双创个人及团队计划”及江苏省杰出青年基金。《半导体学报》和《Nanotechnology》编委。在纳米线生长控制领域的一系?#24615;?#21019;性工作多次被学术新闻?#25945;?span lang="EN-US">Nature Materials HighlightsSPIE Newsroom, APS Physics FocusPhys.org报道。相关工作已发表学术论文100余篇,其中以第?#25442;?#36890;讯作者在PRL,Nature Commun., Nano Letters, Adv. Mater., Adv. Funct. Mater., Nano Energ. 等国际一流学术期刊上发表论文60余篇。参加国际会议80余次,其中邀请报告22次。长期担任ACS Nano, APL, AFM, AEM, IEEE Trans. series20余个SCI期刊的审稿人。承担和参与多项973重大研究、国家自然科学基金和江苏省科技支撑重点研发计划等。申请和获得国际PCT发明授权专利2项和国内发明专利7项,申请受理国际和国内专利12项。